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ABSTRACT

Distributions of test scores need

to be smoothed in equating and/or

norming. Popular parametric smoothing
procedures are based on beta-binomial
and loglinear models. A new approach

has been developed using polynomials of
the beta-binomial cumulative distribu-

tion function. The same approach was

also applied to extend the beta-binomial

family to more than four parameters.
These methods were compared using

cross-validation in two examinee samples
who took the Armed Services Vocational

Aptitude Battery. Results show that the

loglinear and extended beta-binomial

families fit the data about equally
well.
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INTRODUCTION

One major concern in norming and equating of test scores is the

random error in score frequencies, especially at low scores where data

are sparse. This error can be reduced by smoothing the frequencies.

Two major approaches to parametric smoothing are in use at present. One

is based on Lord's beta-binomial models [1]. The number of parameters

in the beta distribution can be two, three, or four. The other approach

is based on Holland and Thayer's use of the loglinear model [2].

In Lord's beta-binomial models, at any given proportion correct

true score T, the number correct score X is assumed to have a binomial

distribution with the probability parameter equal to T. The true score
is assumed to have a beta distribution. In the two-parameter model, the

true scores can vary from zero to one and the two parameters are
determined by its mean and variance. In the three-parameter model, the

third parameter is the smallest value of the true score in the examinee
population. In the four-parameter model, the fourth parameter equals

the largest true score in the population.

In the loglinear model, the logarithm of the probability of a ,.,-ore

X is assumed to be a polynomial of X. If the polynomial contains p
terms, the maximum likelihood estimates of the polynomial coefficients
are such that the first p moments of X in the fitted distribution equal
those in the sample [2]. The number of powers in the polynomial can be

increased indefinitely until the fit of the model is considered

satisfactory.

A third approach, developed by the author, uses polynomial families

in which the fitted cumulative distribution function (cdf) is a
constrained polynomial of some convenient parametric cdf, say of the

negative hypergeometric (NH) distribution. Suppose F is the cdf of the

NH distribution. Let G be the true cdf. We assume that G is a

polynomial of F, subject to the end point constraints

G - 0 when F - 0 , G - 1 when F - 1

The general form of a polynomial which obeys the above constraints is

G - F + F(l-F) [a2 + a 3F + a4 F
2 ... ap FP 2]

The p+l parameters to be fitted are the mean and variance of the NH

distribution plus the p-1 coefficients in the polynomial. The
polynomial must be monotone increasing in (0,1). In particular, its
slopes at F-O and F-1 must be nonnegative. Theoretical details and

computational formulas will be presented in a forthcoming research

memorandum.

The beta-binomial methods have two shortcomings. One is that, with

three and four parameters for the beta, the density requires single and

double summations. Moreover, each term in the sum contains quantities
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that are computed by recursion. This makes it difficult to calculate
derivatives analytically. More important, the number of free parameters
cannot exceed four. In contrast, the loglinear and polynomial families
can use as many parameters as are needed to obtain a satisfactory fit.
Therefore, as described later, the beta-binomial family was extended
into a polynomial family with the four-parameter beta-binomial as the
base distribution F.

The objective of the study was to compare the beta-binomial,
loglinear, and polynomial family approaches in terms of their fit to a
large number of score distributions.

DATA

The Armed Services Vocational Aptitude Battery (ASVAB) is used in
selection and classification of applicants to the military services. It
yields scores on nine power tests and two speed tests. The number of
items in the power tests ranges from 15 to 50. The speed tests,
Numerical Operations and Coding Speed, contain 50 and 84 items,
respectively.

Seven forms of the ASVAB have been administered to randomly
equivalent samples from two populations. One population consists of
recent military recruits. Very low scores are rare in this population
because people with low aptitude have already been rejected. The sample
size by form ranges from 2,501 to 2,774. The second population consists
of applicants for enlistment in the military services, and hence
provides a wider range of scores. The sample sizes vary from 13,010 to
14,963. Both data sets were provided by the Air Force Human Resources
Laboratory.

ESTIMATION OF PARAMETERS

In the beta-binomial family, the binomial error model was used
because, according to Lord ([1], p. 253), the simple binomial works as
well as the compound binomial for fitting univariate distributions.
Lord (p. 265) provides formulas for computing moments of
proportion-correct true scores from those of observed scores. From the
first four moments of true scores and the fomulas for moments of the
beta distribution ([3], p. 40), one calculates the beta parameters that
make the theoretical values equal to the empirical ones. This is easy
for the three-parameter model; for the four-parameter model, a search
procedure is needed to find the four.h parameter. Sometimes it is not
possible to match the empirical moments; the four-parameter model may be
reduced to the special case of the three-parameter model, and sometimes
the latter to the two-parameter, i.e., NH, distribution.

The recursive procedure of Lord and Novick ([4], eqn. 23.6.4) was
used for the negative hypergeometric distribution. For three- and four-
parameter beta-binomial families, probabilities of scores can be
calculated using equation 52 in [1].
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Parameters of the loglinear model were estimated by maximum
likelihood. Holland and Thayer ([2], p. 5) provide expressions for
first and second derivatives of the logarithm of the likelihood
function. A minimizing routine written by the author was used to fit
the parameters.

Maximum likelihood estimation can be used for the polynomial family
as well, but minimum chi-square is more convenient. The Pearson
chi-square uses expected frequencies in the denominator. If one uses
observed frequencies in the denominator, calculations become much
simpler [5]. For given mean and variance of the NH distribution, the
chi-square is a quad.atic function of the coefficients of the
polynomial. Hence one can obtain them by solving linear equations. For
the same reason, it is easy to impose the constraints of nonnegative
slopes at end points. Norlinear minimization is needed only over the
two parameters of the NH distribution. Also, once scores are grouped so
as to have a specified minimum frequency in each group, there is no
danger of small denominators. Formulas for chi-square and its
derivatives will be included in a forthcoming technical report.

The concept of a polynomial family of distributions is very
flexible. Any parametric distribution can be used as the base, subject
only to the feasibility of computer programming. Preliminary results
showed that fit of the four-parameter beta-binomial model was excellent
in many cases but unsatisfactory in others. Therefore, the beta-
binomial family was extended by using polynomials as follows: The four-
parameter beta-binomial distribution was used as the base. The third
and fourth parameters of the beta distribution, which represent minimum
and maximum true scores, were held fixed. The first two parameters,
which describe a standard beta distribution, were treated as free
parameters of the base distribution, and a polynomial family was fitted
in the same way as with the NH distribution. Derivatives with respect
to the beta parameters were computed from finite differences.

Seven distributions were fitted in each family, with the total
number of free parameters varying from two to eight.

CRITERION FOR EVALUATION

It is possible to evaluate goodness of fit in the same sample as
the one used to estimate model parameters. Pearson chi-square is
convenient and popular, but it may favor the polynomial family, for
which the parameters were estimated by minimum chi-square. Similarly,
chi-square using likelihood ratio may favor the loglinear model, for
which maximum likelihood estimation was used.

Therefore, cross-validation was used to evaluate the families. For
each form of each test, the available data were split into two random
samples with each examinee having a probability of .5 of going into
either sample. For each smoothing procedure, parameters were estimated
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in sample I and the estimates were used to compute score probabilities
and hence log likelihood in sample 2. In any comparison, the method
with higher likelihood was considered to have fitted better.

The log likelihood was subtracted from the maximum possible value,
which is obtained by treating the observed proportion of each score as
its true probability in the population. The difference, multiplied by
two, is similar to a chi-square statistic. (This quantity does in fact
have a chi-square distribution if the log lihelihood is computed in
sample 1, scores are grouped so that expectei frequency in each group is
large enough, and the model being fitted is correct.) Therefore, the
statistic will be referred to as "chi-squ-re" even though its true
distribution is not strictly chi-square. Interpretation of its absolute
value remains subjective, but one adjustment is helpful. The numoer of
items varied from 15 to 84. All else being equal, a longer test yields
a higher chi-square because it provides more degrees of freedom.
Therefore, for a test with n items, each chi-square was divided by 3n/4,
which is the number of distinct scores above chance. Thinking of 3n/4
as the degrees of freedom in a large sample, one might say that the fit
of a model is satisfactory if this "adjusted chi-squar&" is two or less.

Since the divisor is the same for all methods aad for all forms of
any given test, this adjustment has no effect on the comparison of any
two mcdels. Also, because model fitting and evaluation are done in
different samples, it is possible for the chi-square to increase when
another free parameter is added, even within the same family. An
additional parameter reduces the bias of a model, i.e., the difference
between the true distribution and its best approximation using the
model. However, the extra parameter also adds to the random error in
the estimated distribution. It is possible for the increase in random
error to exceed the reduction in systematic error, and hence for the
chi-square in sample 2 to increase when the extra parameter is added.
As will be se-n below, this happened quite frequently.

RESULTS

Power and speed tests were analyzed separately. Only the power
test results will be reported in detail. Multiple choice tests of speed
are used much less than power tests. Also, the number of distinct forms
was only 14 for speed tests compared to 63 for power tests. The two
samples differ not only by a factor of five in size but also in the
length of the lower tail. Therefore, their results will be presented
separately.

With three families and two to eight parameters, 21 different
models were used for each form of each test. The smallest of the 21
chi-squares was found, and the corresponding family and number of
parameters were noted. Table 1 shows the distributions of these
best-fitting models. The beta-binomial family is the best one overall
in the recruit sample, and the loglinear family is the best overall in
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the applicant sample. The number of parameters has a mode of 4 in the
recruit sample, showing that the fit often got worse on adding another
parameter.

Table 1. Distribution of family and of number of param-
eters with smallest chi-square

Number of free parameters Total

Family 2 3 4 5 6 7 8

Recruit sample

Loglinear 0 2 9 2 3 3 1 20
Beta-binomial 0 6 4 2 7 7 3 29
Polynomial of NH 1 2 4 1 2 0 4 14

Total 1 10 17 5 12 10 8 63

Applicant sample

Loglinear 0 0 2 3 4 17 12 38
Beta-binomial 1 0 0 6 4 3 5 19
Polynomial of NH 0 0 1 1 2 0 2 6

Total 1 0 3 10 10 20 19 63

For more detailed comparisons, the loglinear family was treated as
the reference. For each test, form, and number of parameters, adjusted
chi-squares for the beta-binomial and the NH polynomial family were
subtracted from that for loglinear. Thus, a negative result for beta-
binomial indicated that the loglinear model fitted better than beta-
binomial for that form using that number of parameters. For a given
pair of families and a specific number of parameters, the available
number of differences was 63, which is large enough for meaningful
calculation of percentiles. Seven such percentiles are reported in
table 2. "L - B, 3" means loglinear minus beta-binomial using three
parameters, and so on. "P" stands for polynomial of the NH
distribution. The medians are the easiest to interpret: for example,
the value of 0.59 in the "L - B, 3" line for the recruit sample
indicates that, with three parameters, the beta-binomial fitted better
on the whole than the loglinear model did.
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To evaluate the best fit that could be achieved using the available
models, the lowest adjusted chi-square (over all three families and two
to eight parameters) was identified for each test*form combination.
Sixty-three of these minimum values were available in each sample.
Their percentiles are also shown in table 2.

The results in table 2 yield the same conclusion as those in
table 1: the beta-binomial model worked best in the recruit sample,
loglinear in the applicant sample, and both were clearly superior to the
polynomial of NH cdf. The smallest adjusted chi-square indicates that,
if a value of two or less represents satisfactory fit, such fit was
achieved in over 90 percent of the test*form combinations.

Table 2. Percentiles of differences between adjusted
chi-squares, and of smallest adjusted chi-squares

Chi-square, Percentile
no. of par. 95 90 75 50 25 10 5

Recruit sample

L - B, 3 2.43 2.43 1.24 0.59 0.03 -0.63 -6.18
L - B, 4 0.58 0.41 0.18 0.01 -0.09 -0.21 -0.63
L - B, 5 0.46 0.23 0.14 -0.06 -0.14 -0.28 -0.35
L - B, 6 0.72 0.50 0.15 0.03 -0.09 -0.21 -0.35
L - B, 7 0.61 0.49 0.23 0.06 -0.07 -0.16 -0.23
L - B, 8 0.92 0.58 0.30 0.14 -0.10 -0.30 -0.38
L - P, 3 1.52 1.36 0.62 0.12 -0.84 -1.91 -2.40
L - P, 4 0.57 0.40 0.19 -0.10 -0.44 -0.77 -0.93
L - P, 5 0.33 0.26 0.05 -0.10 -0.48 -0.65 -0.83
L - P, 6 0.89 0.47 0.17 -0.10 -0.21 -0.48 -0.63
L - P, 7 0.60 0.42 0.14 -0.05 -0.30 -0.50 -0.60
L - P, 8 0.81 0.58 0.23 -0.06 -0.19 -0.45 -0.94

Smallest 2.04 1.72 1.50 1.21 1.00 0.79 0.71

Applicant sample

L - B, 4 0.90 0.69 0.30 -0.07 -1.08 -1.94 -2.54
L - B, 5 0.79 0.51 0.28 -0.32 -1.06 -1.83 -2.08
L - B, 6 0.58 0.36 0.20 -0.04 -0.77 -1.63 -2.15
L - B, 7 0.43 0.30 0.02 -0.21 -0.94 -1.74 -2.24
L - B, 8 0.40 0.34 0.15 -0.08 -0.62 -1.64 -2.01
L - P, 4 1.17 0.87 0.55 -0.27 -4.06 -7.82 -8.51
L - P, 5 0.70 0.59 0.09 -0.45 -3.59 -7.05 -8.15
L - P, 6 0.86 0.55 0.17 -0.22 -1.20 -2.83 -3.59
L - P, 7 0.62 0.44 -0.10 -0.37 -1.44 -2.77 -4.10
L - P, 8 0.42 0.31 -0.03 -0.27 -1.06 -1.63 -2.14

Smallest 2.53 2.28 1.96 1.55 1.30 1.01 0.89
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Results for speed tests showed that the beta-binomial family never
yielded the lowest chi-square in either sample. (Recall that, while any
distribution may be used for fitting data, theoretically the beta-
binomial models do not apply to speed tests.) Loglinear and NH
polynomial families provided the best fit almost equally often. The
smallest adjusted chi-square was less than two for all forms in the
recruit sample. In the applicant sample, the smallest adjusted
chi-square was less than two for about half the forms, and was never
more than 2.6. This may be considered a satisfactory fit since the size
of sample 2 was over 6,000.

DISCUSSION

The results, based on two samples from different populations and 63
forms of power tests, show that both the loglinear and the beta-binomial
families should be tried while smoothing score distributions. The
polynomial family using negative hypergeometric as the base does not
appear promising.

Maximum likelihood estimation for the loglinear family is much
simpler, both in theory and in computer programs, than constrained
minimum chi-square for the polynomials that extend the beta-binomial
family beyond four parameters. However, once the computer programs have
been written, this aspect does not matter. Another difference is that
asymptotic standard errors are available in the loglinear family, for
parameter estimates and hence also for the fitted probabilities [2].
However, the practical value of these standard errors is open to
question. Maximum likelihood estimates have their theoretical
asymptotic properties when the model, including the number of free
parameters, is fully specified. Standard asymptotic theory using
Fisher's information matrix is not applicable when stepwise fitting is
used to determine the number of parameters in the model.

In the asymptotic limit, minimum chi-square and maximum likelihood
yield the same estimates. Hence theoretical standard errors (subject to
the same criticisms as above) can be derived for the polynomial family
with a negative hypergeometric base. They cannot be computed for the
beta-binomial family, as implemented in this study, because the third
and fourth parameters of the beta distribution are estimated using
moments and then held fixed while other parameters are optimized by
minimum chi-square.

In an operational testing program, in contrast to research, one
cannot stop with a general conclusion that two families are worth
trying. For each form of each test, one member of one family must be
chosen to calculate the smoothed distribution. The rule for making this
choice depends on various factors including the sample size, the
relative importance of random versus systematic error in the testing
program, and the effect of rounding (which makes small changes in the
fitted distributions irrelevant even if they are statistically
significant).
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The cross-validated chi-square used in this study provides one way
of choosing a model: For any form of any test, one should use the
combination of model and number of parameters that yields the smallest
chi-square in the validation sample. However, this approach shows what
works best with half the available sample size. It is likely that a
larger number of parameters will be optimal when the entire sample is
used to fit the same model. (This effect can be seen in table 1: the
number of parameters needed to minimize the adjusted chi-square tends to
be larger in the applicant sample than in the recruit sample.) Because
of the variety of considerations involved, a thorough discussion of
possible decision rules is beyond the scope of this study.
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